作为一位杰出的教职工,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小编精心整理的一元二次方程教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
一元二次方程小班教案 篇1
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点
1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
Ⅱ.讲授新课
一、例题讲解
投影片:(§2.8.1A)
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么
(1)h与t的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流。
[师]请大家先发表自己的看法,然后再解答.
[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式。
(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可。
还可以观察图象得到.
[师]很好.能写出步骤吗?
[生]解:(1)∵h=-5t2+v0t+h0,
当v0=40,h0=0时,
h=-5t2+40t.
(2)从图象上看可知t=8时,小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0。
∴t(t-8)=0。
∴t=0或t=8。
t=0时是小球没抛时的时间,t=8是小球落地时的时间。
二、议一议
投影片:(§2.8.1B)
二次函数①y=x2+2x,
②y=x2-2x+1,
③y=x2-2x+2的图象如下图所示。
(1)每个图象与x轴有几个交点?
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
[师]还请大家先讨论后解答。
[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点。
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根。
(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;
二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根。
由此可知,二次函数y=ax2+bx+c的图象和x轴交点的'横坐标即为一元二次方程ax2+bx+c=0的根。
[师]大家总结得非常棒。
二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。
三、想一想
在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?
[师]请大家讨论解决。
[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此当小球离开地面2秒和6秒时,高度都是60m。
Ⅲ.课堂练习
随堂练习(P67)
Ⅳ.课时小结
本节课学了如下内容:
1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系。
2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根。
Ⅴ.课后作业
习题2.9
板书设计
§2.8.1 二次函数与一元二次方程(一)
一、1.例题讲解(投影片§2.8.1A)
2.议一议(投影片§2.8.1B)
3.想一想
二、课堂练习
随堂练习
三、课时小结
四、课后作业
备课资料
思考、探索、交流
把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?
解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则
S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625。
即当x=25时,S最大=625。
(2)S正方形=252=625。
(3)∵正三角形的边长为 m,高为 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= 。
∴S圆=πr2=π·( )2=π· = ≈796(m2).
所以圆的面积最大。
一元二次方程小班教案 篇2
教学目标:
1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点
1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点
1、建立一元二次方程实际问题的数学模型
2、把一元二次方程化为一般形式
教学方法:指导自学,自主探究
课时:第一课时
教学过程:
(学生通过导学提纲,了解本节课自己应该掌握的内容)
一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)
1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程。
2、你发现上述三个方程有什么共同特点?
你能把这些特点用一个方程概括出来吗?
3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念
你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?
二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?
4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?
5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?
三、反思:(学生,进一步加深本节课所学内容)
这节课你学到了什么?
四、自查自省:(通过当堂小测,及时发现问题,及时应对)
1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个
(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
3、关于x的方程(㎡-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.
作业:必做题:习题7.1
选做题:(挑战自我)p41随堂练习
1、已知关于的方程是一元二次方程,则为何值?
2、当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?
3、关于的一元二次方程(m-1)x2+x+㎡-1=0有一根为,则的值多少?
4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2?
(1)(2)
板书设计:一元二次方程
定义:一个未知数整式方程可以化为
一般形式ax2+bx+c=0(a、b、c为常数,a≠0)
二次项一次项常数项
系数为a系数为b
教学反思
这次我参加了区里组织的优质
课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。
首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间
其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。
再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。
我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。
一元二次方程小班教案 篇3
一、教学目标
知识与技能
(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法
在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:
教学重点难点
重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法
创设情境——主体探究——合作交流——应用提高
四、学案
(1)预学检测
3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?
五、教学过程
(一)创设情境、导入新
(1)自学本P2—P3并完成书本
(2)请学生分别回答书本内容再
(二)主体探究、合作交流
(1)观察下列方程:
(35-2x)2=900 4x2-9=0 3y2-5y=7
它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?
(2)一元二次方程的概念与一般形式?
如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56
(三)应用迁移、巩固提高
例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?
x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2
例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得
3x2-3x=5x+10
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0
其中二次项系数为3,一次项系数为-8,常数项为-10.
学生练习:书本P4练习
(四)总结反思 拓展升华
总结
1.一元二次方程的定义是怎样的?
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.
(五)布置作业
(1)必做题P4 习题1.1A组 1.2
(2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。
一元二次方程小班教案 篇4
学习目标:
1.使学生会用列一元二次方程的方法解决有关增长率的应用题;
2.进一步培养学生分析问题、解决问题的能力。
学习重点:
会列一元二次方程解关于增长率问题的应用题。
学习难点:
如何分析题意,找出等量关系,列方程。
学习过程:
一、复习提问:
列一元二次方程解应用题的一般步骤是什么?
二、探索新知:
1.情境导入
问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范。2002年将自家的.坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2003年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长2003年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?
2.合作探究、师生互动
教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即2002年实际完成的亩数是30(1+x),第二次增长后,即2003年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩。
教师引导学生运用方程解决问题:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%。
②全村坡耕地还林还草为50×36.3=1815(亩),国家将补助粮食1815×500=907500(斤)=90.75(万斤)。
三、例题学习:
说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。
例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?
(小组合作交流教师点拨)
时间基数降价降价后价钱
第一次600600x600(1-x)
第二次600(1-x)600(1-x)x600(1-x)2
(由学生写出解答过程)
四、巩固练习:
一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
五、课堂总结:
1.善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。
2.注意解方程中的巧算和方程两个根的取舍问题。
六、反馈练习:
1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()
A.x+(1+x)x=20%B.(1+x)2=20%
C.(1+x)2=1.2D.(1+x%)2=1+20%
2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()
3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?
一元二次方程小班教案 篇5
一、复习引入
1、已知方程x2—ax—3a=0的一个根是6,则求a及另一个根的值。
2、有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?
3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=,x2=、观察两式左边,分母相同,分子是—b+√b2—4ac与—b—√b2—4ac。两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程x1x2x1+x2x1、x2
x2—2x=0
x2+3x—4=0
x2—5x+6=0
观察上面的.表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程x1x2x1+x2x1、x2
2x2—7x—4=0
3x2+2x—5=0
5x2—17x+6=0
小结:1、根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p,x1、x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。
即:对于方程ax2+bx+c=0(a≠0)
∵∴
∴,
(可以利用求根公式给出证明)
例1:不解方程,写出下列方程的两根和与两根积:
例2:不解方程,检验下列方程的解是否正确?
例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)
例4:已知方程的一个根是,求另一根及k的值、
变式一:已知方程的两根互为相反数,求k;
变式二:已知方程的两根互为倒数,求k;
三、巩固练习
1、已知方程的一个根是1,求另一根及m的值、
2、已知方程的一个根为,求另一根及c的值、
四、应用拓展
1、已知关于x的方程的一个根是另一个根的2倍,求m的值、
2、已知两数和为8,积为9,求这两个数、
3、x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?
五、归纳小结
1、根与系数的关系:
2、根与系数关系使用的前提是:
(1)是一元二次方程;
(2)判别式大于等于零、
六、布置作业
1、不解方程,写出下列方程的两根和与两根积。
(1)x2—5x—3=0
(2)9x+2=x2
(3)6x2—3x+2=0
(4)3x2+x+1=0
2、已知方程x2—3x+m=0的一个根为1,求另一根及m的值、
3、已知方程x2+bx+6=0的一个根为—2求另一根及b的值、
一元二次方程小班教案 篇6
一、教学目标
知识与技能
(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法
在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点
重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法
创设情境——主体探究——合作交流——应用提高
四、学案
(1)预学检测
3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?
五、教学过程
(一)创设情境、导入新
(1)自学本P2—P3并完成书本
(2)请学生分别回答书本内容再
(二)主体探究、合作交流
(1)观察下列方程:
(35-2x)2=9004x2-9=03y2-5y=7
它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?
(2)一元二次方程的概念与一般形式?
如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56
(三)应用迁移、巩固提高
例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?
x2-x=13x(x-1)=5(x+2)x2=(x-1)2
例2:将方程3x(x-1)=5(x+2)化成一元二次方程的.一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得
3x2-3x=5x+10
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0
其中二次项系数为3,一次项系数为-8,常数项为-10。
学生练习:书本P4练习
(四)总结反思拓展升华
总结
1.一元二次方程的定义是怎样的?
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0且c≠0。
(五)布置作业
(1)必做题P4习题1.1A组1.2
(2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。
一元二次方程小班教案 篇7
学情分析
学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
教学目标:
知识技能
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法
1、通过一元二次方程的引入,培养学生分析问题及解决问题的能力.
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感态度
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
教学重难点
重点:一元二次方程的概念及一般形式.
难点:探求问题中的等量关系,建立方程模型
教学突破:
1、方程是否为一元二次方程,主要看是否满足三个条件:
(1)是整式方程;
(2)只含有一个未知数;
(3)未知数的最高次数为2次。
2、一元二次方程的各项系数均是相对于一般形式而言的,因此在教学中应强调:若要确定各项的系数,应先将方程化为一般形式。另外,一定要注意符号,尤其符号不能漏掉。
教学过程设计
一、创设情境引入新课
问题1:
在长30米,宽20米的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500平方米,求道路的宽度?.
通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.
问题2:
参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,求有多少家参加商品交易会?
二、启发探究获得新知
1、一元二次方程的概念:经整理后,,只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
说明:(1)由一问题得到2个方程,由学生观察归纳这2个方程的特征,给出名称并类比一元一次方程的定义,得出一元二次方程的定义.
(2)一元二次方程必须同时具备三个特征:a)整式方程; b)只含有一个未知数; c)未知数的最高次数为2.
眼疾口快:
请抢答下列各式是否为一元二次方程:
(4)5x+3=10
说明:此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
2、一元二次方程的一般式:
试一试:
例1、下面给出了某个方程的几个特点:
它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
请你写出一个符合条件的的一元二次方程
说明:此题设置的目的在于加深学生对一般形式的理解
三、运用新知体验成功
小试牛刀:
1.将下列方程化成一元二次方程的一般形式,并
写出其中的.二次项系数、一次项系数和常数项.
(1)5x 2 -1= 4x;
(2)4x 2 = 81;
(3)4x(x+2)=25;
(4)(3x – 2)( x + 1 ) = 8x - 3
说明:巩固练习学生整理一般形式的方法,并准确找出各项系数.此环节可找学生口答结果.另让学生落实将刚才教师板书的整理一般形式的过程,再次突出本节课的重点内容。
2.(1)小区2013年底拥有家庭轿车64辆,2015年底家庭轿车的拥有辆达到100辆,若该小区这两年的年平均增长率相同,求年平均增长率x;
(2)一个矩形的长比宽多2厘米,面积是100平方厘米,求矩形的长x;
(3)要组织一次篮球联赛,每两队之间都赛一场,计划安排21场比赛,有多少队参加?
说明:这几题有在实际生活中应用的意义,以此题为例,教师板书整理一元二次方程的过程,让学生学会如何整理任意一元二次方程的一般形式,并能准确找到各项系数.
教师在此活动中应重点关注:
(1)由一个学生列出方程,并解释解题方法,教师进行引导,点评,引起其他学生的关注,认同.
(2)教师在归纳点评过程中,应注意把两队只打一场比赛解释清楚,以便学生理解题意.
(3)整理一般形式后,教师应强调整理过程中应用到的等式变形方法,如去括号,移项,合并同类项,去分母等.
(4)让学生指出各项系数时,教师强调系数须带符合.
例2、当m取何值时,方程(m-2)xm2-2+3mx=5
是关于x的一元二次方程?
此题由学生思考,讨论,并由学生给出结果并进行解释.
说明:此活动过程中,教师应重点关注:
(1)此题目在上一题的基础上继续加大难度,第(1)题须强调先进行整理,再考虑二次项系数是否为零;第(2)题须先求出m值,再代入二次项系数中,验证是否为0,得到结果.
(2)学生解答过程中,教师把整理的一般形式书写在黑板上,以便全体学生理解.
(2)学生解答过程中,教师把整理的一般形式书写在黑板上,以便全体学生理解.
四、归纳小结拓展提高
1、问题:
本节课你又学会了哪些新知识?
说明:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
2、还有什么疑惑?
五、布置作业:
教科书第21.1第1、2、3题.
板书设计
21.1一元二次方程
一元二次方程的概念:方程两边都是整式,并且只含有一个未知数,未知数的最高次数是2的方程叫一元二次方程。
一元二次方程的一般形式
a表示二次项系数,b表示一次项系数,c表示常数项。
例1.例1、下面给出了某个方程的几个特点:
它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
请你写出一个符合条件的的一元二次方程
例2、当m取何值时,方程(m-2)xm2-2+3mx=5
是关于x的一元二次方程?
学生学习活动评价设计:
关注学生在学习活动中的表现,如能否积极的参加活动,能否从不同的角度去思考问题,等等,而不是仅局限于学生列方程,判断学生各项系数的正确与否。
重视学生应用新知解决问题的能力的评价,鼓励学生使用数学语言,有条理地表达自己的思考过程,鼓励大胆质疑和创新。
一元二次方程小班教案 篇8
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点
1、教学重点:学会用列方程的方法解决有关增长率问题。
2、教学难点:有关增长率之间的数量关系。下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)原产量+增产量=实际产量。
(2)单位时间增产量=原产量×增长率。
(3)实际产量=原产量×(1+增长率)。
2、例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x。
则2月份的产量是5000+5000x=5000(1+x)(吨)。
3月份的产量是
=5000(1+x)2(吨)。
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2。
x1=0.2,x2=—2.2(不合题意,舍去)。
取x=0.2=20%。
教师引导,点拨、板书,学生回答。
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x。
(2)认真审题,弄清基数,增长了,增长到等词语的关系。
(3)用直接开平方法做简单,不要将括号打开。
练习1、教材P。42中5。
学生分析题意,板书,笔答,评价。
练习2、若设每年平均增长的百分数为x,分别列出下面几个问题的方程。
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。
(1+x)2=b(把原来的总产值看作是1。)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数。
((1+x)2=b+1把原来的总产值看作是1。)
以上学生回答,教师点拨。引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的`产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n。
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力。
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x。
第一次降价后,每件为600—600x=600(1—x)(元)。
第二次降价后,每件为600(1—x)—600(1—x)x
=600(1—x)2(元)。
解:设每次降价为x,据题意得
600(1—x)2=384。
答:平均每次降价为20%。
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。
引导学生对比“增长”、“下降”的区别。如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1—x)2=b)。
(四)总结、扩展
1、善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程。培养学生用数学的意识以及渗透转化和方程的思想方法。
2、在解方程时,注意巧算;注意方程两根的取舍问题。
3、我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率。3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程。
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1、数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2、最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率。
一元二次方程小班教案 篇9
教学目标:
(一)知识与技能:
1、理解并掌握用配方法解简单的一元二次方程。
2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。
(二)过程与方法目标:
1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。
2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。
(三)情感,态度与价值观
启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。
教学重点、难点:
重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。
难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。
教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。
教学过程
学生活动
设计意图
一 复习旧知
用直接开平方法解下列方程:
(1)9x2=4 (2)( x+3)2=0
总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。
二 创设情境,设疑引新
在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。
例:小明用一段长为 20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?
三 新知探究
1 提问:这样的方程你能解吗?
x2+6x+9=0 ①
2、提问:这样的方程你能解吗?
x2+6x+4=0 ②
思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?
归纳总结配方法:
通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。
配方法的依据:完全平方公式
配方法的关键:给方程的两边同时加上一次项系数一半的平方
点拨:先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。
四 合作讨论,自主探究
1、 配方训练
(1) x2+12x+( )=(x+6)2
(2) x2-12x+( )=(x- )2
(3) x2+8x+( )=(x+ )2
(4) x2+mx+( )=(x+ )2
强调:当一次项系数为负数或分数时,要注意运算的准确性。
2、将下列方程化为(x+m)2=n
(n≥0)的形式并计算出X值。
(1)x2-4x+3=0
(2)x2+3x-1=0
解:X2-4X+3=0
移向:得X2-4X=-3
配方:得X2-4X+2^2=-3+2^2(两边同时加上一次项系数一半的平方)
即:(X-2)2=1
开平方,得:X-2=1或X-2=-1
所以:X=3或X=1
方程(2)有学生完成。
3、巩固训练:课本55页随堂练习第一题。
五 小结
1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。
2、用配方法解二次项系数为一的一元二次方程的一般步骤:
(1) 移项(常数项移到方程右边)
(2) 配方(方程两边都加上一次项系数的一半的平方)
(3) 开平方
(4) 解出方程的根
六 布置作业
习题2.3第1,2题
两个学生黑板上那解题,剩余学生练习本上计算。
学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得
x(10-x)=9
但是发现所列方程无法用直接开平方法解。于是引入新课。
学生通过观察发现,方程的左边是一个完全平方式,可以化为( x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。
方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。
在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:
x2+6x=-4
x2+6x+9=-4+9
(x+3)2=5
从而可以用直接开平方法解,给出完整的解题过程。
在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。
检查学生的练习情况。小组合作交流。
学生归纳后教师再做相应的补充和强调。
学生分组完成方程(2)和课后随堂练习第一题
学生分组总结本节课知识内容。
一元二次方程小班教案 篇10
1、自我介绍:30s
大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!
2、一元二次方程概念、系数、根的判别式:8min30s
我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!
一元:只含一个未知数
二次:含未知数项的最高次数为2
方程:一个等式
一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ
3、一元二次方程的解法:20min
那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~
(1)直接开方法
遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n 0, 则x=±n 。同学们能明白吗?
(2)配方法
大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:
简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)
需要变换的:2x +4x-8=0
步骤:将二次项系数化为1,左右同除2得:x +2x-4=0
将常数项移到等号右边得:x +2x=4
左右同时加上一次项系数一半的平方得:x +2x+1=4+1
所以有方程为:(x+1)=5 形似 x=n
然后用直接开平方解得x+1=±5 x=±5-1
大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!
题目:1/2x-5x-1=0 答案:x=±+5
大家都会做吗?还需要讲解详细步骤吗?
(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~
首先,公式法里面的公式大家还记得吗?
x=(-b ±2-4ac )/2a
这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:
3x -2x-4=0
其中a=3,b=-2,c=-4
带入公式得:x=((-(-2))± 2) 2-4x(-4)x3/(2x3)
化简得:x1=(1-)/3 x2=(1+)/3
同学们你们解对了吗?
使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~
(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!
简单来说,因式分解就是将多项式化为式子的乘积形式。
比如说ab+ab 可以化成ab (1+a)的乘积形式。
那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0 这样就可以解出x=-a/m x=-b/n
我们一起做一个例题巩固一下:4x +5x+1=0
则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、总结:1min
好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!
猜你喜欢
更多- 二次供水管理规定精选范文1500字 由于学校的工作的严谨,实用文书渐渐充斥着我们的生活,实用文书是一种偏向社会的文书,怎样才能写好实用类文书?相信你应该喜欢小编整理的二次供水管理规定精选范文1500字,为防遗忘,建议你收藏本页!第一条为加强三台县城区生活饮用水二次供水管理,防止饮用水污染,保证饮用水二次供水水质,保障人民身体健康,根据... 公司接待管理规定范文 01-09
-
一元捐倡议书2篇 面对一些需要群众一起参与的活动方案,我们时常会创作一份号召群众一起参与的倡议书,倡议书的使用频率越来越高,你对倡议书的撰写是否感到迷茫呢?急您所急,小编为朋友们了收集和编辑了“一元捐倡议书2篇”,希望能为您提供更多的参考。 各位同学:当我们在美丽的校园里健康、快乐地生活、学习的时候,有那么一些同学,...
- [精选条例]
二次供水卫生管理制度之三 在社会不断发展的现在,我们可能会撰写一些必要的文书,实用文书的作用也不可小觑,你对实用文书有什么心得呢?下面是小编为大家整理的“
二次供水卫生管理制度之三”,欢迎大家阅读,希望对大家有所帮助。为确保二次供水水质,符合国家《生活饮用水水质卫生规范》,保护业主的身体健康,根据国家和市、区卫生行政职能部门... 员工管理制度方案 06-30
- “爱心一元捐”倡议书 “爱心一元捐”倡议书1各位同学:当我们在美丽的校园里健康、快乐地生活、学习的时候,有那么一些同学,他们因为贫困或白血病严重影响了正常的学习和生活。而此时此刻,我们很多人想伸出援手却又心有余而力不足,因... 爱心一元捐倡议书 02-15
最新更新
更多-
最新一元二次方程小班教案(汇集10篇) 作为一位杰出的教职工,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小编精心整理的一元二次方程教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。一元二次方程小班教案 篇1教学目标(一)教学知识点1.经历探索二次函数与一元二...
- 最新实习医院带教老师总结(集锦11篇) 老师实习证明01-23
- 作弊处分撤销申请书(汇集十三篇) 大学处分撤销申请书01-23
- 学校生活周记300字(热门十篇) 大学实习周记01-23
- 幽默哲理广播稿(通用10篇) 讲文明广播稿01-23
- 五一劳动节作文扫地作文(热门10篇) 日记五一劳动节作文01-23
- 电子琴作文(模板十篇) 写景作文01-23