最新幂函数教案(精华4篇)
2025-05-03 幂函数教案幂函数教案 篇1
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1、选取与内容密切相关的',典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。
同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
幂函数教案 篇2
各位评委、老师们:
大家好!我说课的内容是《对数函数及其性质》,《对数函数及其性质》是高中数学必修1第二章第二节的第2课时的教学内容。下面我从教材分析、教学目标设计、教学重难点、教法学法、教学媒体设计、教学过程设计六个方面对本节课进行说明:
一、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
二、教学目标设计:
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。
2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。
3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。
三、教学重点、难点分析
1、理解函数的概念、掌握函数值的求法、函数定义域的求法是本节课的重点
2、学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。
四、说教法、学法
在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。
说学法“授人与鱼,不如授人与渔”。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,进行以下学法指导:
比较法:在初步理解函数概念的同时,要求学生比较两种概念,特别加深理解数学知识之间的相互渗透性。
观察分析:让学生要学会观察问题,分析问题和解决新问题
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。
五、教学媒体设计:
根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:
教师利用多媒体准备的素材:
①对数函数的图像
②例题和习题
③与本节课相关的结论
设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。
六、教学过程的设计:
环节一:引入课题,初步感知概念
1.知识回顾
1)学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?
设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.
2)对数的定义
设计意图:为讲解对数函数时对底数的限制做准备.
2.教学情景
由学生前面学习的熟悉的细胞有丝分裂问题入手,引入对数函数的概念设计意图:学生通过实际问题,体会函数
环节二:新知探究,构建概念
(一)对数函数的概念
1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).
学生思考问题:
①为什么对数函数概念中规定
②对数函数对底数的.限制:
设计意图:为学习对数函数的定义,图像和性质做铺垫
(二)对数函数的图象和性质
教师和学生通过列表,描点画出函数1)(2)(3)(4)的图像,并引导学生类比指数函数的图像和性质观察,归纳对数函数图像的特征,得出性质。
探索研究:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可计算器)(1)(2)(3)(4)
环节三、典例分析,深化知识、
例1:
解:(略)
设计意图:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理巩固练习:
环节四、归纳小结,强化思想
本节课主要讲解了对数函数的定义,图像和性质及其求定义域,了解通过图像观性质。
环节五、作业布置(加深对知识的理解)
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
幂函数教案 篇3
高中是人生中最重要的阶段,规划好高中三年的学习对孩子将来将产生重大的影响。结合高中数学教学内容的特点及高考考试大纲,结合我校学生实际,制定本教学计划,请各年级组遵照执行。
一、首先要认识高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变。
2、思维方法向理性层次跃迁。
3、知识内容的整体数量剧增。
4、知识的独立性大。
二、改变观念。
初中阶段,通过大量的练习,可使学生的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。然而进入高中后,情况将发生极大的改变,若果不能掌握坚实的基本知识,不具备基本的数学思想方法,不经过大量的`富有针对性的训练,学好高中数学将是非常困难的,因此,不管是老师还是学生都要转变观念,做好打攻坚战的思想准备。
三、做好复习和总结工作。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等尽量想得完整些。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对容完善,而后应做好单元小结。单元小结内容应包括以下部分:本单元(章)的知识网络和本章的基本思想与方法(应以典型例题形式将其表达出来);
复习当中还有一个不可忽视的内容就是进行适当的训练。重要的不在做题多,而在于做题的效益要高。做题的目的在于检查学生学的知识,方法是否掌握得很好。因此,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,学生就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于学生今后的学习。
四、教师有意识培养学生的各方面能力
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。在平时学习中要注意开发不同的学习场所,开展一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动,通过各种形式培养锻炼学生的基本数学能力。
五、抓好基础。
高中新课程改革后,课本以及内容的编排顺序与都原教材发生了
变化,删去和增加了一些内容,但大部分内容是不变的,只是整体难度略有下降。高中生三年的成长与发展,不论是数学知识的获得,个性的陶冶,还是思维水平、数学能力的提高,都遵循这样一个规律:“三年发展看高一,高一关键在一(上)”,打好高一的基础至关重要。高一数学中我们将学习函数等,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法如:函数与方程思想、数形结合思想等,既是高中高中数学的基础也是将来高考的重点,其重要意义不言而喻。
幂函数教案 篇4
各位评委、老师:
大家好,我说课的内容是人教A版《普通高中课程标准实验教科书A版数学必修一》第二章2.2.2《对数函数及其性质》。
我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。
一、教材分析
本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。
《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:
知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。
过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。
情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.
结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:
重点:对数函数的概念、图象和性质;
难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;
二、学情分析
对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。
三、教学与学法
教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。
老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。
四.教学过程
教学过程分为以下环节:
实例引入、直观感知——总结类比、形成概念——类比探究、分析归纳——知识应用、提升能力——师生交流、归纳小结——作业布置
(一)实例引入、直观感知
1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.
问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数
问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数
问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.
2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。
问题三:你能在以前的'学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)
问题四:你能类比指数函数得到此类函数的一般式吗?
设计意图:体现了类比和特殊到一般的数学思想
(二)总结类比、形成概念
问题五:你能根据指数函数的定义给出对数函数的定义吗?
(师生共同归纳出对数函数的定义)
问题六: 与 中的x,y的相同之处是什么?不同之处是什么?
设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域
(三)类比探究、分析归纳
问题:有了研究指数函数的经历,你会如何研究对数函数的性质?
设计意图:提示学生进行类比学习
合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。
合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。
设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。
教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。
合作探究3:对照指数函数的性质,总结归纳对数函数的性质.
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)
(四)知识应用、提升能力
例1:求下列函数的定义域
(1) ( ) (2) ( )
(该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)
例2:利用对数函数的性质,比较下列各组数中两个数的大小:略
设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法
思考巩固:已知 ,比较m,n的大小
设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度
(五)师生交流、归纳小结
由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。
(六)布置作业
教材P73 练习1,2
设计意图:练习难度不大,是对本节知识的巩固。
- 更多精彩的幂函数教案,欢迎继续浏览:幂函数教案